skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Middag, Rob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dissolved iron (dFe) is an essential micronutrient for phytoplankton, with vanishingly low oceanic dissolved concentrations (pico- to nanomoles per kg) known to limit growth—and thus influence primary productivity and carbon cycling—over much of the surface ocean. However, because of the considerable challenges associated with contamination-free sample collection and accurate analysis of such low dFe concentrations, the first reliable dFe measurements came only in the 1980s. Further, by 2003, despite several decades of research, there were only ~25 full-depth oceanic dFe profiles worldwide, with dust considered to be the main oceanic dFe source. Since 2008, facilitated by the extensive field campaign and rigorous intercalibration of the international GEOTRACES program, there has been an “explosion” in the availability of oceanic dFe data, with hundreds of profiles now available. Concurrently, there has been a paradigm shift to a view of the marine Fe cycle where multiple sources contribute, and some forms of dFe can be transported great distances through the intermediate and deep ocean. Here, we showcase the GEOTRACES dFe datasets across the different ocean basins, synthesize our current multi-source view of the oceanic Fe cycle, spotlight sediments as an important dFe source, and look to future directions for constraining oceanic dFe boundary exchange. 
    more » « less
  2. This special issue of Oceanography celebrates the transformational findings of the international GEOTRACES program in chemical oceanography, 20 years after drafting of the GEOTRACES Science Plan in 2004 (GEOTRACES Planning Group, 2006). With the section cruise phase of the program ending soon, and a planned pivot toward smaller-​scale process studies, this is an opportune time to look back at the achievements of GEOTRACES during the last two decades and to highlight some of the advances in our understanding of the processes that determine the oceanic distributions of trace elements and isotopes (TEIs). 
    more » « less
  3. null (Ed.)
    Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future. 
    more » « less